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 Abstract: This paper investigates the modeling of geodesic lines in curved 

spacetime using methods of differential geometry as applied within the framework of 

General Relativity. By employing Riemannian geometry, we describe how free-falling 

particles move along geodesics under gravitational influence, and how spacetime 

curvature governs such motion. The study focuses on the mathematical structure of 

Lorentzian manifolds, the computation of Christoffel symbols, and the formulation of 

geodesic equations in Schwarzschild and Friedmann–Lemaître–Robertson–Walker 

(FLRW) metrics. Symbolic computations were performed to derive geodesic trajectories 

and analyze curvature effects. The outcomes demonstrate the effectiveness of differential 

geometry in visualizing gravitational dynamics and deepen the mathematical 
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understanding of Einstein’s field equations. These results can support both theoretical 

research and computational physics education. 

 Keywords: Differential geometry, general relativity, geodesics, curved spacetime, 

riemannian manifold, christoffel symbols, schwarzschild metric, lorentzian geometry 

 

1. INTRODUCTION 

General Relativity (GR), introduced by Albert Einstein in 1915, revolutionized the 

understanding of gravitation by interpreting it as a manifestation of spacetime curvature 

rather than a traditional force [1]. Within GR, differential geometry plays a fundamental 

role in defining the geometric structure of spacetime, particularly through the use of 

Riemannian and Lorentzian manifolds [2], [3]. A core concept in this framework is the 

geodesic line, which represents the trajectory of a free-falling particle in the absence of 

non-gravitational forces [4]. The path of such a particle is determined not by Newtonian 

dynamics but by the curvature of the underlying spacetime itself. Hence, to compute or 

model these paths, one must employ differential geometric tools such as Christoffel 

symbols, affine connections, and curvature tensors [5]. This research aims to model 

geodesic lines in selected curved spacetime metrics using symbolic computation and 

tensor calculus, illustrating how these trajectories can be derived and visualized in the 

context of Einstein’s theory. This investigation not only bridges abstract mathematical 

theory and physical interpretation but also aids in educational visualization and simulation 

tools for modern physics curricula [6], [7]. 

2. LITERATURE REVIEW  

Previous works have thoroughly established the mathematical foundations of 

General Relativity using Riemannian geometry. For example, Wald [8] and Misner, 
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Thorne, and Wheeler [9] provide comprehensive treatments of Lorentzian manifolds and 

geodesic motion. Their contributions laid the groundwork for modern computational 

relativity. Chandrasekhar’s work on Schwarzschild geometry [10] provided deep insights 

into the analytic properties of spacetime around spherically symmetric masses. More 

recent studies by Baez and Muniain [11] show how differential geometry can be applied 

computationally for simulating geodesic motion in dynamic spacetimes. In terms of 

educational applications, GeoGebra and symbolic software like Mathematica have been 

increasingly used to visualize geodesic paths in Schwarzschild or FLRW backgrounds 

[12]. Meanwhile, research by Padmanabhan [13] emphasizes the pedagogical need for 

integrating differential geometry with physical interpretations of Einstein’s equations. 

These works guide the present research, which combines analytical derivation with 

computational modeling of geodesic equations, allowing for both academic and practical 

impact. 

 3. METHODOLOGY 

The methodology of this study consists of the following key steps: 

1. Mathematical Framework: We begin by defining the spacetime as a 4-

dimensional Lorentzian manifold      , where   is the metric tensor. The Christoffel 

symbols    
  are derived from the metric using: 

   
  

 

 
   (                 ) 

2. Geodesic Equation: Geodesic lines are computed from the second-order 

differential equation: 

    

   
    

    

  

   

  
   

3. Metric Selection: We perform case studies using: 
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o Schwarzschild metric (for black hole geometry) 

o FLRW metric (for cosmological expansion) 

4. Computation: Using symbolic tools (e.g., Mathematica), Christoffel symbols 

and geodesic equations are computed, and trajectories are simulated for both metrics. 

Table 1. Selected Metrics and Their Key Properties 

Metric Type Geometry Description 

Coordinates 

Used Symmetry 

Schwarzschild Static, spherically symmetric 

mass 

          Time-independent 

FLRW Homogeneous, isotropic 

universe 

          Dynamic 

expansion 

4. RESULTS AND RECOMMENDATIONS 

Results: 

 Geodesic simulations show how test particles spiral or fall into gravitational wells in 

Schwarzschild spacetime. 

 FLRW metric analysis shows radial geodesics expanding over time, reflecting cosmic 

scale factors. 

 Visualizations clarify how curvature leads to acceleration-like effects in purely 

geometric terms. 

Recommendations: 

 Differential geometry should be more deeply integrated into physics education for 

relativity. 

 Open-source tools should be developed to simulate geodesics interactively. 
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 Similar modeling approaches can be extended to rotating (Kerr) or charged (Reissner–

Nordström) spacetimes. 

 CONCLUSION 

This study demonstrates the practical use of differential geometry in modeling 

geodesic motion under General Relativity. By applying tensor calculus to Schwarzschild 

and FLRW metrics, we have shown how curvature dictates particle motion without the 

need for external forces. The results validate the predictive power of Einstein’s theory and 

support its mathematical formalism. Furthermore, the use of computational tools to derive 

and visualize these paths underscores the importance of interdisciplinary integration 

between geometry, physics, and computation. These insights are crucial not only for 

theoretical development but also for improving educational and research tools in modern 

gravitational physics. 
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