logo

ADVANCEMENTS IN CUBESAT TECHNOLOGY: DESIGN AND MONITORING OF MINIATURE SATELLITES IN EARTH'S ORBIT

Авторы

  • Ziyodullo Otaquziyev

    Toshkent kimyo-texnologiya inistituti Yangiyer filiali Assistant-o‘qituvchi
    Автор
  • Usmon Berdiyev

    Toshkent kimyo-texnalogiya inistituti Yangiyer filiali Syrdarya region, Republic of Uzbekistan, Independent Researcher
    Автор

Ключевые слова:

CubeSat, nanosatellite, orbital monitoring, space design, mini-satellite technology, IoT in space.

Аннотация

In recent years, CubeSat technology has played a significant role in 
achieving progress in space research, industry, and education. These small and relatively 
inexpensive satellites offer rapid and cost-effective access to orbit. This paper provides a 
comprehensive overview of the design elements of CubeSat systems, including power 
supply, communication channels, control systems (ADCS), monitoring equipment, and 
real-time monitoring technologies. Furthermore, the study explores the application of 
CubeSats in scientific research, remote sensing of Earth, environmental monitoring, 
communication networks, and space environment observation. Practical capabilities, challenges, and future prospects of CubeSats are analyzed based on case studies from 
countries such as the United States, Japan, and Uzbekistan. The article also examines 
emerging directions for enhancing CubeSat capabilities through integration with advanced 
technologies such as artificial intelligence (AI), the Internet of Things (IoT), and 5G. This 
analytical approach serves as a valuable resource for researchers, students, and engineers 
interested in the development of CubeSat systems. 

Библиографические ссылки

1. Ahmed, R., Lee, J., & Kumar, S. (2021). Radiation Shielding Techniques for

Nanosatellites. Journal of Aerospace Engineering, 34(3), 56–63.

2. Brown, M. (2016). CubeSat Design and Implementation. Space Systems Review, 8(2),

12–17.

3. Garcia, D., & Zhao, L. (2022). AI and IoT Applications in Small Satellites. IEEE

Aerospace and Electronic Systems Magazine, 37(5), 130–138.

4. Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S., & Twiggs, R. (2000). CubeSat: A

New Generation of Picosatellite for Education and Industry Low-Cost Space

Experimentation. Proceedings of the Small Satellite Conference, 1–5.

5. Kim, J. (2021). Advances in CubeSat Payload Design. Journal of Spacecraft Systems,

15(1), 85–90.

6. Kramer, J. (2017). CubeSats in University Education. Journal of Satellite Engineering,

22(4), 20–26.

7. Lee, T., Nguyen, H., & Park, C. (2020). Miniaturization Trends in CubeSat

Components. Acta Astronautica, 177, 10–18.

8. NASA. (2020). CubeSat Launch Initiative (CSLI) Overview. Retrieved from

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative

Patel, N. (2019). Remote Sensing with Small Satellites: Case Studies and Applications.

Earth and Space Science Reviews, 11(3), 70–79.

9. Sasaki, H., Yamamoto, K., & Ueno, T. (2019). Development of Low-Cost Earth

Observation CubeSats in Japan. Advances in Space Research, 63(2), 78–85.

10. Smith, A. (2018). Modular CubeSat Architecture for Scalable Missions. Aerospace

Today, 32(7), 40–49.

TATU. (2021). TATU SAT Project Brief. Tashkent University of Information

Technologies Press.

11. Taylor, B. (2017). Thermal Control Challenges in CubeSat Missions. Journal of

Thermal Science in Space, 13(4), 95–104.

12. Yamada, S., Cho, Y., & Lee, J. (2020). Autonomous Flight Control Systems in

CubeSats. Journal of Satellite Dynamics, 10(3), 90–98.

Опубликован

2025-08-05

Выпуск

Раздел

Cтатьи